
Journal of Cellular Biochemistry 98:701–705 (2006)

FASTTRACKS

Chaperone-Like Activity Revealed in the
Matricellular Protein SPARC
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Abstract SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates
cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. In this report chaperone-like activity
of SPARC was identified in a thermal aggregation assay in vitro. Ultraviolet circular dichroism (UVCD) spectroscopy
determined that SPARC was stable at temperatures up to 508C. Unfolding and aggregation of the chaperone target
protein, alcohol dehydrogenase (ADH), were initiated at 508C. SPARC inhibited the thermal aggregation of ADH in a
concentration-dependent manner, with maximal inhibition at a 1:4 molar ratio of SPARC:ADH. Synergy between the
chaperone-like activities of SPARCand aB-crystallin, a small heat shock protein andmolecular chaperone in the lens,was
observed in SPARC-aB-crystallin double �/�mice. J. Cell. Biochem. 98: 701–705, 2006. � 2006 Wiley-Liss, Inc.
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SPARC is a 32 kDa multifunctional protein
consisting of 285 amino acids comprising
three structural domains [Brekken and Sage,
2001]: An acidic N-terminal domain, a follista-
tin-like domain, and a Ca2þ-binding extracel-
lular domain [Hohenester et al., 1996]. SPARC
is expressed predominantly in remodeling tis-
sues such as bone, healing wounds, and tumors
[Sage et al., 1989; Reed and Sage, 1996], and
modulates cellular interaction with the extra-
cellular matrix (ECM) through interactions
with proteins such as laminin [Sweetwyne
et al., 2004] and collagen [Sasaki et al., 1997,
1998]. SPARC was observed in cell nuclei
suggesting a direct effect on gene expression
[Gooden et al., 1999]. Since a high-affinity
SPARC receptor has not been identified, the
various functions of SPARC appear to be
mediated through the activity of receptors
recognizing growth factors or other components

of the ECM. Up-regulation of SPARC, and
enhanced levels of SPARC mRNA, in response
to heat-shock and other stresses have been
described in transformed human keratinocytes
[Kudo et al., 1994] and in chick chondrocytes
[Neri et al., 1992] in vitro. Expression of SPARC
was associated with cataract formation, a
protein aggregation disease, in humans and
in SPARC-null (�/�) mice [Gilmour et al., 1998;
Norose et al., 1998; Bassuk et al., 1999;
Kantorowetal., 2000], andaheat shock element
was identified in the promoter regions ofmurine
and bovine SPARC [Kudo et al., 1994]. We
reasoned that a chaperone-like function of
SPARC could account for its association with
the stress response.

Under conditions of stress, proteins can
become unfolded or misfolded and form large
aggregates. Molecular chaperones protect
against proteinunfolding andaggregation. This
report demonstrates the chaperone-like activity
of SPARC in vitro.

MATERIALS AND METHODS

Circular Dichroism

The secondary structure of SPARC was
determined by Ultraviolet Circular Dichroism
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(UVCD) with a Jasco 720 circular dichroism
spectrophotometer at three different experi-
mental temperatures: 23, 37, and 508C.
Far-UV experiments were performed at a con-
centration of 0.1 mg/ml in 50 mM PBS, pH 7.0
with a 1 mm pathlength cuvette. Five accumu-
lations were collected for each sample at each
temperature. The far UVCD spectrum of
the buffer (50 mM PBS, pH 7.0) was used
for baseline correction. Data were collected
between 250 and 200 nm. Below 200 nm, buffer
absorption became too significant to allow
accurate measurement.

Animals

Offspringof crossbreedingofSPARC�/�with
aB-crystallin �/� mice resulted in SPARC/aB-
crystallin �/� mice that were examined by slit
lamp. aB crystallin �/� mice were the generous
gift of Dr. Eric Wawrousek, National Eye
Institute [Brady et al., 2001]. 129SvEv x C57Bl/
6J wild-type (wt, þ/þ) and SPARC-null (�/�)
mice were generated as described previously
[Norose et al., 1998]. Mice were housed in a
modified pathogen-free facility by theUniversity
of Washington Department of Comparative
Medicine under protocols and procedures
approved by the University of Washington
Animal Care and Use Committee that conform
to the Guide for the Care and Use of Laboratory
Animals published by the National Institutes of
Health. Nonanesthetized mice were examined
using a slit lamp biomicroscope (model FS-2;
Nikon, Tokyo, Japan), as described previously
[Alizadeh et al., 2004; Seeberger et al., 2004].
Mouse eyesweredilatedwitha 1:1mixture of 1%
tropicamide (Alcon, Fort Worth, TX) and 10%
phenylephrine hydrochloride (Akorn, Abita
Springs, LA). The angle of the slit lamp was
approximately 408, and the slit width was
approximately 0.2 mm. Examinations were
recorded by digital video (Canon Optura Pi,
Tokyo, Japan). Still images were captured (Pre-
miere; Adobe, San Diego, CA) and processed
(Photoshop; Adobe).

Chaperone Assays

Aggregation of ADH (Alcohol Dehydrogenase
from equine liver, lot 093K7400; Sigma, St.
Louis, MO) was measured spectrophotometri-
cally as apparent OD360 (Optical Density,
360 nm) at 508C for up to 120 min by the use of
a Pharmacia Ultrospec 3000 multisample UV/
Vis spectrometer fitted with a VWRmodel 1160

circulating bath. Temperaturewas controlled to
þ/� 0.18C. OD was recorded every 2 min and
was plotted as DOD, where DODt¼ODt�OD0.
The values of DOD for each sample were
normalized as follows: (DODt�DODb)/DODmax,
where DODb¼ the DODt for the buffer blank at
the same time point and DODmax¼ the max-
imum DODt across all time points and samples
in an experiment. The normalized DOD values
were used for the figures. All solutions were
prepared using 150 mM PBS (50 mM sodium
phosphate buffer, pH 7.0, in 0.1 M NaCl). ADH
was present at a concentration of 0.5mg/ml, and
the total volume in all cases was 0.1 ml.
Recombinant human aB-crystallin was pro-
duced in E. coli as described previously
[Muchowski et al., 1997]. Recombinant human
SPARC was produced as described [Bradshaw
et al., 2000]. Briefly, SPARC cDNA was cloned
into a baculovirus expression vector, after
which protein was produced by virally-trans-
fected S. frugiperda cells. Protein was purified
on an anion-exchange column, followed by gel
filtration chromatography. Purity was esti-
mated at >97% by SDS-PAGE. All protein
concentrations were measured using the BCA
Protein assay kit (Pierce, Rockford, IL).

RESULTS

The stability of SPARC in response to thermal
stress was determined using UVCD to evaluate
the secondary structure of SPARC at high
temperature (Fig. 1). Theminimum absorbance
observed in the UVCD spectrum at 220 nm
indicated a-helical structure. Heating SPARC
to 508C produced an increased molar ellipticity
peak at 215 nm but otherwise left the spectrum
unchanged. Protein aggregation measured
by OD had a characteristic S-shaped form
[Kodaka, 2004; Fig. 2]. The initial slope near
zero correspondedwith activation that initiated
nucleation of aggregates as a result of con-
formational changes induced by high tempera-
ture. Continued growth in the number and
size of the aggregates corresponded with
an increased slope. An inflection point was
observed when aggregation approached equili-
brium.

In the presence of a 1:8 molar ratio of
SPARC:ADH, the maximum DOD decreased
approximately 80%, and in the presence of a
1:20 molar ratio of SPARC:ADH, the maximum
DOD decreased approximately 45%. The molar
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ratio of SPARC:ADH required for maximum
inhibition of ADHaggregationwas less than the
molar ratio of aB-crystallin:ADH required
for maximum inhibition of ADH aggregation
(Fig. 3). In the presence of a 1:4 molar ratio of
SPARC:ADH, inhibition of ADH thermal aggre-
gation was nearly complete, and the same
inhibition required a molar ratio of 2:1, aB-
crystallin:ADH (data not shown). The effect of
aB-crystallin was on the initial part of the
aggregation curve defined as the time from
intercept on the Y-axis to beginning of the
increase in slope. In contrast, SPARC had no
measurable effect on the initial part of the
aggregation curve.
The combined effect of the deletion of SPARC

and aB-crystallin on lens transparency was
dramatic. In SPARC/aB-crystallin double �/�
mice, opacification was accelerated and a
mature opacity developed by 1 month of age
(Fig. 4).

DISCUSSION

The results demonstrated that SPARC has
chaperone-like activity in vitro. The presence of

SPARC inhibited thermal aggregation of ADH.
The chaperone-like activity of SPARC was
stronger than that of the small heat shock
protein and molecular chaperone aB-crystallin,
on the basis of the molar ratios necessary to
suppress ADH aggregation. In the absence of

Fig. 1. Thermal stability of SPARC. Ultraviolet circular dichro-
ism (UVCD) spectra of 0.1mg/ml SPARCat 258C (solid gray line),
378C (solid black line), and 508C (dashed black line). Mean
residue molar ellipticity, calculated as deg � cm2 �dmol�1, is
plotted againstwavelength. Theminimumobservednear 220nm
is representative of a-helical structure, and remains constant up
to 508C. No significant differences in the patterns of spectra at
238C, 378C and 508Cwere observed. The secondary structure of
SPARC appears to be stable up to 508C.

Fig. 2. SPARC inhibited the thermal aggregation of ADH.
Optical density (OD) was plotted against time for ADH alone
(&), and ADHwith molar ratios of SPARC:ADH of 1:20 (*) and
1:8 (~). In the presence of a 1:20molar ratio of SPARC:ADH, the
maximum observed OD decreased approximately 45%. In the
presence of 1:8 of SPARC:ADH, the maximum observed OD
decreased approximately 80%. All curves were S-shaped, with
an activation phase with little change, followed by a growth
period of increasing slope and then an inflection point as
aggregation approached equilibrium. The length of the activa-
tion and growth phases was similar in the presence and absence
of SPARC. Increasing the concentration of SPARCwas correlated
with decreasing aggregation of ADH at 508C. OD was normal-
ized as described in Methods.

Fig. 3. The effect of aB-crystallin on the thermal aggregation of
ADH. Optical density was plotted against time for ADH alone
(&), and ADHwith molar ratios of aB-crystallin:ADH of 1:8 (*)
and 2:1 (~). Complete inhibition of aggregationwas observed in
the presence of 2:1 aB-crystallin:ADH. Partial inhibition was
observed with a 1:8 molar ratio of aB-crystallin:ADH. aB-
crystallin significantly increased the amount of time to the
observed inflection point without decreasing the maximum
observed OD.
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SPARC, the opacification in aB-crystallin �/�
micewasaccelerated.UVCDdemonstrated that
SPARC retained secondary structure and con-
formation at high temperature, with onlyminor
differences notedbetween theUVCDspectra for
SPARC at 238C and SPARC at 508C. This
finding supported the stability of SPARC as a
chaperone and the hypothesis that SPARC
could be a stress protein in vivo.

The effect of SPARCwas on theODreached at
equilibrium. In contrast, the effect of aB-
crystallin was on the length of the activation
and growth phases of the ADH aggregation
curve. The difference in the effects on the
aggregation curves suggested that the mechan-
ism of SPARC as amolecular chaperone may be
different from that of aB-crystallin and will be
investigated in future experiments.

The appearance of mature opacities at only
1 month of age in SPARC/aB-crystallin double
�/� mice reinforced the previous finding (11–
14) that SPARC was necessary for normal lens
transparency during aging, and demonstrated
the possibility of a synergistic effect between
molecular chaperones having separatemechan-
isms of action. Each chaperone may be impor-
tant but not required for lens transparency. The
combined impact of the absence of both chaper-
ones on misfolded proteins may accelerate
protein aggregation and loss of normal trans-
parency at an early age.
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